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1 Solution to re-exam, August 2024
By shsp and jakle @ DTU Compute

[98]: from sympy import *

init_printing()
from dtumathtools import *

1.1 Exercise 1
Consider the function f : R? — R given by
fla,y) = 22" + y* — ay?.

[99]: x, y = symbols("x y", real=True)
f=2*x**2+y**2_x*y**2

f
(991, 2 212 + 42
1.1.1 (a)

The level set {(x,y) € R?|f(z,y) = 2} is constituted by:

[100]: solve(Eq(f, 2)), solveset(Eq(f, 2), x)

(e ] 47

This level set consists of the vertical line x = 1 and the parabola x = %yQ — 1. Plotted in a (y, z)
coordinate system (note that the axes have been switched):

[101]: plot(
yx*2 / 2 - 1,
1,
(y, -4, 4),
xlabel="y",
ylabel="x",



title="level set of f(x, y) = 2",

level set of f(x, y) = 2

7

6_

-
.

[101]: <sympy.plotting.plot.Plot at 0x793e589d5690>

To plot it in the more usual (x,y) coordinate system, we have to use plot_implicit:

[102] : dtuplot.plot_implicit(
Eq(f, 2),
(x, -5, 5),
(y, -5, 5),
xlabel="x",
ylabel="y",
title="level set of f(x, y) = 2",



level set of f(x, y) = 2

[102]: <spb.backends.matplotlib.matplotlib.MatplotlibBackend at 0x793e58acb760>

1.1.2 (b)
We can compute the gradient V f(x,y) for all (x,y) € R? directly by:

[103]: grad = dtutools.gradient(f)
grad

[—Qxy + Qy]

1.1.3  (c)

We can compute the Hessian matrix H ¢(x,y) for all (z,y) € R? directly by:

[104] : H = dtutools.hessian(f)
H

[—Qy 2 Qx]
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[110]:

[110]:

1.1.4 (d)
At a stationary point, the gradient equals (0,0). Testing for the point (0, 0):

grad.subs ({x:0,y:0})

0
0
We see that (0,0) indeed is a stationary point.

Hessian matrix eigenvalues:

Hlambdas = Matrix(list(H.eigenvals()))
Hlambdas

—z— /22 + 2+ 42 +1+3
—x 22+ 20+ 4y +1+3

Eigenvalues of the Hessian matrix at (0, 0):

Hlambdas.subs({x: 0, y: 0})

2

4
According to Theorem 5.2.4, with two positive eigenvalues of the corresponding Hessian matrix, the
stationary point (0,0) is a local minimum.
1.1.5 (e)

All stationary points by solving for when both partial derivatives are zero simultaneously:

solve([Eq(grad[0], 0), Eq(grad[1], 0)1)

[{JIIO, y:0}7 {ZEZl, y:_z}a {x:la y2H
So, f has the three stationary points (0,0), (1,—2), (1,2).

Hessian matrix eigenvalues at the two latter stationary points:

Hlambdas.subs({x: 1, y: -2}).evalf()

—2.47213595499958
6.47213595499958

Hlambdas.subs({x: 1, y: -2}).evalf()

—2.47213595499958
6.47213595499958

Both of these stationary points (1, —2), (1,2) show eigenvalues of opposite signs of their correspond-
ing Hessian matrices. According to the Theorem, they are both saddle points. With (0,0) found to
be a local minimum above, all stationary points have now been covered for.



1.2 Exercise 2
Given column vector y in R* equipped with the standard inner product:

[111]: y = Matrix([1l, 2, 2, 4])
y

[111]:

=N N

1.2.1 (a)
Creating the matrix A = yy”:

[112]: A =y * y.T

A

2 4 4 8
2 4 4 8
4 8 8 16

The transpose matrix A”:
[113]: A.transpose()

8
8
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6
According to the list on page 6 in the textbook, since A = AT then the matrix A is symmetric.

An alternative general argument is as follows: Any matrix of the form YY7 is symmetric where Y
is a matrix (or vector). The proof is easy:

(YYT)T — (YT)TYT — YYT

1.2.2 (b)

We see easily that the second and third columns are formed by multiplying the first column by the
scalar 2, and likewise the fourth column by the scalar 4. Hence all columns are scalar multiples of
each other. Again, it is possible to give a more general argument. Let A be any matrix of the form
yy”. Then

A=yy" =ylyiye-ya)" = lyviyy - Yy

which shows that all columns are scalar mulitples of y.



It follows that any linear combination of columns of A will belong to span(y). Therefore, the rank
of the matrix will be p(A) = 1 since the rank is the dimension of span of the columns (i.e., the
number of columns that are linearly independent as vectors). We check this:

[114]: A.rank()

[114]:

1.2.3 (c¢)
For R*, the inner product is given by: (z,y) == -y =y’ z.

Hence, we look for a non-zero vector € R* such that y”z = 0. A vector that fulfills this could be:

[115]: x = Matrix([2, -1, 0, 0])
X
[115]: 9
-1
0
0
We check:

[116]: x.dot(y)

[116]: 0

or, alternatively:

[117]: y.T * x

[117]: [0}
1.2.4 (d)
We have:

0= (z,y) =y’ =,

where the last expression is a vector multiplication. Therefore

Az =yyTx =y0=0

1.2.5 (e)

The subspace spanned by y is denoted Y = span(y). Its orthogonal complement is given to be
Y+ = kerA.

According to the rank-nullity theorem (in Danish: the dimension theorem):

dim(R?) = dim(kerA) + p(A).



[118]:

[118]:

[119]:

[119]:

[120] :

[120] :

[121]:

[121]:

[122]:

[122]:

We therefore have that 4 = dim(Y*) + 1. Hence, dim(Y1) = 3.

1.2.6 ()

A basis for Y1 is a basis for kerA and will contain 3 basis vectors due to its dimension. We find
such a basis for ker A by solving Ax = 0, quickly done with Sympy:

sols = A.nullspace()

sols
-2 -2 —4
1 0 0
0|’ 1|’ 0
0 0 1

We perform the GramSchmidt procedure to generate an orthonormal basis vector set spanning the
same subspace:

sols_ortho = GramSchmidt(sols, True)
sols_ortho

_2V5 25 _4
5 15 15
V5 _4/5 _38
5 ) 15 ) 185
0 VAl 55
0 0 5
vl = sols_ortho[0]
v2 = sols_ortho[1]
v3 = sols_ortho[2]
vl, v2, v3
_2v6 _2/5 _4
5 15 15
V5 _ 456 _8
5, LA ¥
0 VAl 55
0 0 5

Checking for orthogonality (inner products, meaning dot products, must be 0) and magnitudes of
1:

vl.dot(v2), v2.dot(v3), v3.dot(vl)
(0, 0, 0)

vl.norm(), v2.norm(), v3.norm()
(1, 1, 1)

Fulfilled, hence they constitute an orthonormal basis for Y.



1.3 Exercise 3

Let the function f : R — R be given by

[123]: x = symbols("x", real=True)
f = sin(x) / x
1.3.1 (a)

Plot of the graph for « € [-10, 10]:

[124]: plot(f, (x, -10, 10), ylabel="f(x)", xlabel="x", title="f(x) = sin(x)/x")

f(x) = sin(x)/x
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[124] : <sympy.plotting.plot.Plot at 0x793e589d50c0>

The plot shows the graph of f(x) for x # 0. For x = 0, the point (0, 1) should be added to the plot
for completeness.

We consider x = kr for each k € Z:



[125]:

e For k =0, we have x = 0, and thus we are in the second case where f(0) = 1.
e For cach k € Z\ {0} we are in the first case. Since sin(kmw) = 0 for any integer k, then
fkm) = snkT) — 0 for each k € Z \ {0}.

kx =
F k) = {o for k +# 0,

We conclude that:
1 for k=0.

1.3.2 (b)
Second-degree Taylor polynomial of sin(x) from expansion point oy = 0:

sin(x) .series(x, 0, 3).remove0()

[125]:
x

[126] :

[127]:

[127]:

So, the second-degree Taylor polynomial is Py(z) = .

1.3.3 (c)

For Taylor’s limit formula of sin(x) from expansion point zp = 0 we add the remainder term to the
approximating polynomial from (b) according to Theorem 4.6.1:

sin(z) = z 4 (z — z0)%e(x — ) = z + z%(z).
The limit is:

sin(z)

2
lim = lim w = lim (1 + ze(z)) = 1,
x—0 x x—0 x x—0

since g(x) — 0 for x — 0 by definition.

1.3.4 (d)

We know that sin(z) and 1/x are smooth functions for all z # 0, and thus continuous functions on
that interval. According to the first bullet point on page 66 in the textbook, their product sin(z)/x
is thus also continuous for all z # 0. For x — 0 we know from (c) that sin(z)/xz — 1, but by
definition we also have f(0) = 1. We therefore have continuity at z = 0. Hence, f is continuous at
all x € R, so f is a continuous function according to Definition 3.1.1.

1.3.5 (e)
Given a function g : R — R where g(x) = sin(3z)/x for z # 0 and g(x) = ¢ for x = 0.

g = sin(3 * x) / x

Taylor’s limit formula of sin(3z), choosing expansion point zy = 0:

sin(3 * x).series(x, 0, 3)

3x+ O (333)



So, Taylor’s limit formula is sin(3z) = 3z + x2¢(x). Finding the limit

i sin(3z)

x—0 T

2
= lim 3 +a7e(@) = lim (3 4+ ze(x)) = 3.
z—0 x

z—0
Hence, if ¢ = 3 then g is a continuous function
Plot:

[128]: plot(g, (x, -10, 10), ylabel="g(x)")

o
.
4
b
5
ds.
= V{\\Z{D\\//\ L%} ; 2/5\/;\/\?\5/’\ ;
s

[128] : <sympy.plotting.plot.Plot at 0x793e58736cb0>

1.4 Exercise 4

Consider the subset A C R? given by

A={(z1,20) eR* |1 <a?+ 22 <4Az1>0A29 >0}
Define the function f: A — R by

f(z1,z2) = In(z? + 23).

10



[129]:

[130]:

[130]:

x1, x2 = symbols("x1 x2", real=True)
f = 1n(x1*%2 + x2%%2)

1.4.1 (a)

To show that r?In(r?) — 72 is an anti-derivative of 2In(r?)r, we simply have to verify that
(r?In(r?) — 7“2)/ = 2rIn(r?). This is easily done:

r = symbols("r", real=True, positive=True)
exp = r**2 * In(r**2) - r**2

exp.diff (r)

2rlog (1"2)

Of course, it is also possible to differentiate r? In(r?) — 72 by hand:

(7‘2 ln(rz) — r2)’ = (T2 ln(rz))/ —2r = (7”2)' ln(rQ) + 72 (111(7’2))/ —2r =2r 111(7’2) + 72 (ln(r2))/ — 2r.

Here the product rule was used. We compute (ln(r2))/ using the chain rule, where we temporarily
substitute in u = r? as the inner function in the logarithm:

(In(r))’ = (2 (In(w))’ = 27”% - 27“% Y.

Continuing from where we left off before:

(r’In(r?) — TQ)I = 2rIn(r?) 4+ r22/r — 2r = 2rIn(r?) + 2 — 2r = 2rIn(r?).
As we wanted to show.

1.4.2 (b)

Since we know from (a) that 72In(r?) — 72 is an antiderivative of 2rIn(r?) for » > 0, then all

antiderivatives when r > 0 are given by:
/27“ In(r?)dr = r?In(r?) — r? + k,
where k£ € R is an arbitrary constant.

1.4.3 (c)

The set A is the quarter of an annulus (a “circle ring”) with inner radius 1 to outer radius 2 that is
located in the first quadrant. Parametrization:

p(r,0) = (rcos(f),rsin(d)) , rell,2],0 €[0,7/2].

11



[131]: theta = symbols("theta", real=True)
p = Matrix([r * cos(theta), r * sin(theta)])

P

I el

Plotting the inner and outer circle sections - the region A is the set of points between the two shown
curves, bounded by the axes in the first quadrant:

[132]: pl = plot_parametric(*p.subs({r:1}), (theta, 0, pi/2), xlabel="x", ylabel="y",
—aspect_ratio = (1,1), show=False)
p2 = plot_parametric(*p.subs({r:2}), (theta, 0, pi/2), show=False)
pl.extend(p2)
pl.show()

2.00
1.75
1.50 ~
1.25 ~
= 1.00 ~
0.75
0.50

0.25 +

D.GD T T T T T T T T
0.00 025 050 075 100 125 150 175 2.00

X

Partial derivatives of the parametrization:

[133]: p_r = p.diff(r)
p_theta = p.diff(theta)

12



p_r, p_theta
(1331 /reos (0) —rsin (0)
sin (@) |’ | rcos ()
Hence, the Jacobian matrix is:
[134]: J = p.jacobian([r,thetal)
J

[134]: [Zj’jézi ;Zzgn((ei)]

and the Jacobian determinant is:

[135]: detJ = J.det().simplify()
detJ

[135]:

1.4.4 (d)

f is a continuous function for x? + x5 > 0, so within the given region A. A continuous function
satisfying the conditions (I) and (II) on page 140 in the textbook is Riemann integrable according
to the remark after Definition 6.3.1.

e A is bounded, so condition (I) is fulfilled.
e The boundary dA is formed by a continuously differentiable curve, since it is a circle with a
parametrization r as found in (c¢). Thus, condition (II) is fulfilled.

We conclude that f is Riemann integrable.

1.4.5 (e)

p found in (c) is injective and has non-zero Jacobian determinant on I". To compute the integral
fA f(z1,22)d(x1, z2), we can therefore use the change-of-variables theorem 6.4.1:

2 /2
/A f (a1, 22)d (a1, 72) = /F F(p(r,0)) |det(Jp(r, 0))| d(r, 0) = / /0 F(p(r,0)) |det(Jp(r, 0))| d0dr,

where Jp, is the Jacobian matrix.
Restriction f(r(u,v)) :

[136]: fr = f.subs({x1: p[0], x2: p[1]}).simplify()
fr

[136]: 21og (1)

Plane integral:
[137]: integrate(fr * detJ, (theta, 0, pi / 2), (r, 1, 2)).expand()

[137]:

13



3
—Zﬂ + 27log (2)

Since

[138]: fr * detJ

[1381: 2rlog ()

we can also use the results in (a) to compute the plane integral as:

[139]: int_via_anti = S(1)/2 * (pi / 2 - 0) * (exp.subs({r: 2}) - exp.subs({r: 1}))
int_via_anti.expand()

[139]:
—??TW + 27log (2)

The approximate value is:
[140]: _.evalf()

(1401 99897769041486
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