TRANSPORT OF POLLUTANTS —
YEARS OR CENTURIES?

01004 Mathematics 1b - 2024

1 Purpose

Pollution is a global — and a local problem. Pollution from surrounding soil areas is transported to
watercourses, e.g. via groundwater flow. The pollution can e.g. consist of pesticides sprayed on fields or,
in rarer cases, non-recyclable waste located in so-called landfills. This pollution can pose a threat to the
plants and animals that live in the water.

The purpose of this project is to analyse a simple model for how pollutants are transported by means of
groundwater flow. Physically, such transportation is described by Darcy’s law:

Darcy’s law is similar to Ohm’s law of electrical circuits, while K corresponds to the conductivity
(resistance™!) and A is a cross-sectional area. The pressure gradient h/dx drives the flow

Mathematically, the project deals with topics such as solving linear and non-linear differential equations
for h(xz) via numerical and exact methods (e.g. via diagonalisation). In addition, it deals with the
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Figure 1: Map of the Vestskov landfill area. The three landfills are perceived as elevations in the landscape.
Immediately north of the landfills is a transect of boreholes where the groundwater level is measured.

determination of the minimum for a function of several variables for adapting the model to measurement
data.

With these results, one can answer the key question: how long does it take for the pollution to be
transported down to the creek (ie. what is the removal time)?

2 Background

In the first part of the project, one has to examine how pollution is transported via groundwater flow.
The example studied here is pollution to Risby Creek ("Risby &”) in Vestskoven.

A map of the area by Vestskoven is shown in Figure 1 (top). In the area there are three landfills with
deposits. Pollution has occurred in the area due to leakage from these landfills. In the area there are
a number of boreholes where the groundwater level, or rather, the hydraulic pressure level is measured.
Using these pressure levels one can outline the direction of flow of groundwater. Figure 1 thus shows the
boreholes that will be used in this project. The groundwater flow is from borehole F12 past the landfills
and towards Risby Creek.

Figure 2 (page 4) shows a sketch of the regional geology in the area. At the top is the area of approx. 2-4
meters of moraine sand, followed by approx. 18 meters of moraine clay. Limestone is found under this
layer. A section through the local area is shown in Figure 3 (page 4). This cut is laid approximately along
a streamline from F12 to Risby Creek. The figure shows the boreholes where the groundwater level (h,
outlined in the figure) is measured. The figure also shows that there are two groundwater reservoirs. An
upper secondary basic water reservoir (fine sand/silt), which is in contact with the nearby river (Risby),
as well as a lower primary groundwater reservoir in the limestone used in the area for drinking water
supply. The moraine clay separates the two groundwater reservoirs.



As outlined in Figure 3, there is a horizontal flow from the east of the landfills down towards Risby Creek
(¢ in Figure 3). This is because there is a pressure drop down towards the river. At the same time, there
is also a downward pressure gradient and flow (gx) between the upper and lower magazine as the pressure
level in the limestone everywhere can be assumed to be H = 13.8 m, i.e. below the pressure level in
the upper section, where h is approx. 14-17 m along the cross section (the pressure is lower as water is
drained from the lower reservoir). The pollution in the area has occurred next to drilling P9 (Figure 3).
The pollution will therefore move horizontally towards the river — and vertically towards the limestone
reservoir.

3 Data

Data for the area in Vestskoven are shown in Tables 1 and 2 (page 5). The net infiltration into the
groundwater is 200 mm/year (it rains about 700 mm per year on average, but about 500 mm drains and
evaporates). The thickness of the moraine clay can be set to m = 18 m and the pressure level in the
limestone is constant H = 13.8 m.

A model for the pressure, h(x), in the upper groundwater reservoir is set out below for the cross section
shown in Figure 3. The cross section is L = 500 m long and the boundary conditions are given at
maintained pressure levels. At x = 0 m, the pressure level is h(0) = 14.00 m and at x = 500 m, the
pressure level is the same as in F12, ie h(500) = 17.09 m.

The two unknown parameters in the model are Ky and K, , which are the hydraulic conductivities for
the upper groundwater reservoir and for the moraine clay that separates it from the lower groundwater
reservoir in limestone. In practice, hydraulic conductivity is determined experimentally.

On May 14, 1999, a number of pressure levels were measured, which are shown in Table 2. The cross
section in Figure 3 is almost parallel to the east-west and Table 2 therefore shows the UTM (East)
coordinates for the boreholes (UTM stands for Universal Transverse Mercator).

Problem 3.1

(a) Create a plot in Python of the data points given in Table 2, e.g. of h(zx) as a function of the distance
to the river, . The distance is calculated using the UTM coordinates. What are the conditions on the
boundary values of h?

(b) What kind of nth-degree polynomial p,(x) can approximate the data points progress? Try e.g. to
experiment with n =1,...,4.

4 Physical model

This section sets out a physical model for determining the pressure drop h as a function of distance, x.
Liquid flow in porous media is governed by Darcy’s law:

QZst'A%

. (4.1)

where @ is the water flow (measured in m?/s), h is the pressure level (m), A is the cross-sectional area
(m?) and K is the hydraulic conductivity (m/s) of the water reservoir. A K-value therefore characterizes
how well "the geology conducts water”. Sand has a relatively high K-value (~ 10~* — 1073 m/s), while
clay has a lower K-value (~ 1077 — 1075 m/s). A pressure gradient dhdx # 0 is required to facilitate a
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Figure 2: Regional geology in the area. The landfill area is shown in the figure (”deponi”).
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Table 1: Data from Vestskoven

Parameter Value Unit
Net infiltration, N 0.2 m/yr
Datum, zg 13 m
Thickness of moraine clays, m 18 m

Pressure level in limestone, H  13.8 m
Porosity in upper magazine, § 0.21 -

Length of cross section, L 500 m
Fixed pressure, hg 1709 m
Fixed pressure (creek), hy, 14.00 m

Table 2: Observed pressure levels, h, and UTM-east coordinates.

Borehole UTM-East (m) Pressure level (m)

F12 333147 17.09
F11 333068 16.38
F10 333008 16.38
P9 332961 16.14
F9 332938 16.11
F8 332883 16.09
F7 332836 16.05
F6 332788 16.06
Risby Creek 332647 14.00

current, analogous to the fact that a potential difference is necessary to create a current in an electrical
circuit

In principle, the area A is a function of three variables A = A(z,y, z), ie it can change in horizontal and
vertical direction. In the following, we only need to look at a one-dimensional model. Here we define the
area to be A = (1m - d), where d = h — 2 is the saturated layer thickness (m) in the sand, see Figure 3
(20 is datum, ie. reference point). In other words, everything is calculated in ”per meter width”. The
cross-sectional area is therefore changed with the distance depending on whether the groundwater level
changes. Hereby (4.1) is rewritten to

dh

Q=-K,- (h—ZO)E- (4.2)

The water flow @ is therefore non-linear with respect to h as there is a non-linear term h% on the rhs.
In the following, it is used that the Darcy velocity is defined as flow per total area, ie
Q dh
- X _ K. 4.3

A flow balance (total flow in = total flow out) can also be established for the control volume in Figure 4
(next page) which states that no liquid accumulates in the control volume,

d

_9Q 4 Nda — qudz =0, (4.4)

dx
Here, N corresponds to the net infiltration on an annual basis (ie precipitation minus current evaporation,
ie the part of the precipitation reaching down to the groundwater). The quantity N can be assumed to
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Figure 4: Control volume for setting up flow balance. The section is shown from the other side in relation
to Figure 3.

be constant corresponding to a mean infiltration over a year, and gy is the amount of water lost from the
upper groundwater reservoir due too a gradient down towards the limestone. This amount of water is not
necessarily constant. The pressure level in the limestone (H, see Figure 3) can be considered constant,
but since the upper pressure level (h) varies, g, will also vary, according to Darcy’s law written in the
vertical direction:

H—-h
m
where K,,, and m, are the hydraulic conductivity and the thickness of the moraine clay, respectively

5 Solving the differential equations

Problem 5.1

(a) Using the formulas from section 4, derive that the pressure drop h(z) is determined by the differential
equation

d? ((h — 20)?) LM H—h 2N

0. 5.6
dx? K, m +Ks (5.6)

(b) What is the order of this differential equation? Why is it a non-linear differential equation? Consider
what other conditions h must meet. It may be, for example, that h has specific values at the endpoints
of the interval where we seek to determine h (called boundary conditions)

Problem 5.2

The differential equation (5.6) can not be solved analytically. Although one can not solve (5.6) directly,
one can say something about what a possible solution would look like.

(a) Define y(z) = h(z) — 2o and find an equation for y(z) using equation (5.6). Specifically, one must

show that y(z) satisfies an equation of the form

, 1
y(@—m

V12A4y(z)3 — 18 By(z)? + 36C . (5.7)



Can Python solve this equation for y(z)?

(Hint: Write (5.6) in the form (y?(x))” — Ay(z) + B = 0, multiply the left side of (5.6) by y(z)y’(z) and
integrate on both sides)

Problem 5.3

One way to approach (5.6) is to look at different limits, where the solution is of a relatively simple form.

(a) First, assume that the solution to the differential equation (5.6) is a constant function h(z) = hg
(even if it is contrary to the boundary conditions). Derive an expression for hx in terms of the given
constants.

(b) Assume that the solution is a linear function, ie. h(x) = axz + S. Is there a solution h(x) for equation
(5.6) with a # 07

(Hint: insert the two different solutions in equation (5.6))

Problem 5.4

We now know that the desired function, h(z), can not be a linear function, ie. a straight line, but must
have a more complicated shape.

(a) Set the hydraulic conductivities to K,, = 5-1078 m/s and K; = 3-107® m/s and determine from
this an approximate value for hx in problem 5.3 given data in Table 1 (in the table N is calculated
in m/year, it should be converted to m/sec).

(b) Consider why the second term of the differential equation (5.6) must be small whenever h ~ H. Solve
the differential equation (5.6) in the case where the second term (proportional to K,,/Kj) is ignored, ie.
find an exact solution in this case without the use of Python.

(Hint: If (y(z)?)"” = constant, y?(z) must be a quadratic polynomial)

Problem 5.5

One can simplify (5.6) by assuming that the cross-sectional area A in equation (4.1) is constant, ie. that
(4.1) is modified to

dh
— K, -dy™ :
Q s dO dx’ (5 8)

where dj is a constant that e.g. is an average of h — 2y along the transect of boreholes.

(a) Use equations (4.4) and (4.5) to derive that the resulting differential equation corresponding to (5.6),
in this case is * 2(h— H) " N
—— m— (h—H
dx? dngm( )+d0Ks

=0, (5.9)

and that this is therefore a linear differential equation.

(b) What kind of differential equation is (5.9)? Solve (5.9) directly, using the known theory from Math-
ematics 1.

(Hint: first solve the corresponding homogeneous equation, then the inhomogeneous).

*Note that (5.6) is a differential equation for h — zo , while (5.9) is a differential equation for h — H.



6 The model as a system of differential equations

As an alternative to solving a 2nd order differential equation (5.9), one can set up the model as a system
of 1st order equations. The idea is to use the variables h and @ to write up a system of first-order
differential equations, which is a model for the system, see equations (4.1) and (4.4). Note that these two
equations express the horizontal flow and the vertical flow respectively. We assume that A is constant
equal to dp, thus replacing (4.1) by (5.8)

Problem 6.1

(a) Show that the system of differential equations (5.8) and (4.4) can be written in matrix form (you will
also need equation (4.5)). Set up a set of equations of the following form,

y'(z) = Ay(z) + B, (6.10)

where y(z) = (h(z),Q(x))T, y'(z) = (h'(2),Q'(x))T and A is a 2 x 2 matrix while B is a column-vector.

(b) What kind of system of differential equations is this, and what does the complete solution look like
according to the theory?

Problem 6.2

Determine the solution to the corresponding homogeneous equation by diagonalizing A, ie. D = P 1AP,
where D is a diagonal matrix and P is a square matrix determined by the eigenvectors of A.
(a) Find the eigenvalues and the eigenvectors of A. Start by showing that the eigenvalues are given by

— K
Ar =/ otk

(b) Then write the complete solution to (6.10) by determining a constant solution to y’(xz) = 0. The
complete solution depends on Ay and on two unknown constants, which we call ¢; and c5 .

Problem 6.3

We do not yet know the values of the hydraulic parameters from the given data. Therefore set K,, =
5-1078 m/s and K, = 3-107% m/s to begin with. Furthermore, set dy equal to the average of h — 2o
along the boreholes.

(a) Insert these values for K,,, K, in the solution found and use Python to determine the two unknown
constants c1, ¢o using the boundary conditions for h(z).

(b) Plot h(x) and compare, if necessary, with the plot in problem 3.1.

(¢) Try changing K, and K, by up to £10% and see if this gives a visibly better approximation to the
data points.



7 Determination of the hydraulic parameters

On the basis of data, it should be possible to find the values of the unknown hydraulic conductivities
K, and K, by comparison with the model. When you have to ”calibrate” a given model, you employ a
measure of the error between model (function h) and measured data on the form

N 1/p
ERR = | |h(#:) — huneas(x:)[” . (7.11)
i=1
Here hppeqs(2;) are the measured pressures in the positions x;,i = 1,..., N (N is the number of data

points). The power p is chosen depending on what you want to achieve; different choices of p correspond
to different ”sensitivities” to model deviations from data. In the following p = 2 is used.

Problem 7.1

(a) Determine values of K and K, that make the error ERR as small as possible for the data listed in
Table 2. For h(x) the type of solution determined in problem 6.2 is used, ie K,,, K, are varied slightly
away from the original values and new values for ¢; and ¢y can then be determined by using the boundary
conditions.

For example, one can calculate the error ERR at five points in the (K,,, Ks)-plane: first with the values
in problem 6.3. Then change K, by £10% while maintaining K, and vice versa. One can also examine
ERR as a function of K, (maintain the value of K as 3-107% m/s).

Problem 7.2

(a) Use Python to determine the nth degree polynomial p,(z) that best matches the data. Try with
n=12,..8.

(b) Calculate the error ERR for each of the eight polynomials in question (a).

Problem 7.3

There is a unique ”Lagrange polynomial”, which is the polynomial of degree < n that goes through n+1
given points (z;, y;).

(a) The data points in Table 2 consist of nine points. Determine the Lagrange polynomial that goes
exactly through all points. Plot the Lagrange polynomial together with the data points, and calculate
ERR.



8 Transport of pollutants

In the last part of the project, one must examine how quickly pollution is transported via groundwater
flow.

Darcy’s law (4.1) expresses the flow per total cross-sectional area, A. Since the area is made up of the
grains of sand and pore space (the area between sand grains) the pore water velocity is defined as

q
v= 2, 8.12
! (312
where 6 is the porosity. The porosity is defined as the number of cubic meters of pore space per cubic
meter totalvolume and is therefore less than 1. The pore water velocity is therefore greater than the

Darcy velocity, q.

The average removal time in a piece of soil of a particle transported with the groundwater is found by

expressing velocity as a derivative
dz

=
where x is the position of a particle after a given time, t. The removal time T of the particle over the

interval [z1, 2] is calculated as
T o 1
T :/ dt :/ Zdx. (8.14)
0 xq v

If the pore water velocity is constant, it is especially obtained that the removal time in an interval of
length [ is

v (8.13)

l
T=-—. (8.15)
This gives the simple result that the removal time is the length divided by the speed. In the case where
v is not constant, the calculation becomes a little more complicated. It is possible to give an estimate
of the removal time in the following way: the velocity between P9 and the creek can approximately be

calculated using Darcy’s law as,

_ K,Ah 3-107°16.14 — 14

=—= =9.7-107% ~3.1 8.16
W= A = 021 a1 m/s m/yr (8.16)
This means that the removal time can be estimated at,
314
T:l/|v|:ﬁyr:101yr. (8.17)

With proper integration, one will find that time becomes something else as the pore water velocity
increases dramatically down towards the river due to the less saturated layer thickness, just as it is
almost zero in the middle of the transect. To make this more precise, one finds v(z) by differentiating
the expression for h(x), cf. equation (8.16), where Ah/Ax is an approximation to the derivative. Then
T is found by integration, cf. equation (8.14).

Problem 8.1

(a) Find the pore water velocity, v(z), and thus the removal time T in the upper groundwater reservoir
to the river, if the particle is ”released” at landfill 3, corresponding to borehole P9. For h(z) the solution
used is determined in problem 6.3.

(b) What happens to the removal time if the particle "begins its journey” at borehole F6? For h(x)
choose the solution determined in problem 6.3.
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Problem 8.2

(a) Consider whether these results are sensitive to the estimates of K, and K,,. What happens to the
removal times if the two parameters change independently with e.g. £10%?

Problem 8.3

(a) What happens to the removal time if you use the simple model from problem 7.2 (eg a cubic polyno-
mial)? Is this model realistic?
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