
solution-exam-f24

May 25, 2024

1 Solution of Exam F24
by Jakob Lemvig and Steeven Hegelund Spangsdorf

[1]: from sympy import *
init_printing()
from dtumathtools import *

1.1 Exercise 1
Given quadratic form:

[2]: x1,x2,x3 = symbols("x_1 x_2 x_3")
xvec = Matrix([x1, x2, x3])
q = 5*x1**2 + 8*x1*x2 - 4*x1*x3 - 22*x1 + 5*x2**2 + 4*x2*x3 - 32*x2 + 8*x3**2 -␣

↪20*x3 + 53
q

[2]: 5𝑥2
1 + 8𝑥1𝑥2 − 4𝑥1𝑥3 − 22𝑥1 + 5𝑥2

2 + 4𝑥2𝑥3 − 32𝑥2 + 8𝑥2
3 − 20𝑥3 + 53

1.1.1 a

The partial derivatives are:

[3]: qx1=diff(q,x1)
qx2=diff(q,x2)
qx3=diff(q,x3)

hence, the gradient is:

[4]: nabla_q = Matrix([qx1,qx2,qx3])
nabla_q

[4]:
⎡⎢
⎣

10𝑥1 + 8𝑥2 − 4𝑥3 − 22
8𝑥1 + 10𝑥2 + 4𝑥3 − 32

−4𝑥1 + 4𝑥2 + 16𝑥3 − 20
⎤⎥
⎦

for any 𝑥𝑥𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3. The gradient can also be found by:

1

[5]: nabla_q = dtutools.gradient(q,[x1,x2,x3])
nabla_q

[5]:
⎡⎢
⎣

10𝑥1 + 8𝑥2 − 4𝑥3 − 22
8𝑥1 + 10𝑥2 + 4𝑥3 − 32

−4𝑥1 + 4𝑥2 + 16𝑥3 − 20
⎤⎥
⎦

1.1.2 b

The Hessian matrix is computed by:

[6]: H_q = hessian(q, [x1,x2,x3]) # or dtutools.hessian(q, [x1,x2,x3])
H_q

[6]:
⎡⎢
⎣

10 8 −4
8 10 4

−4 4 16
⎤⎥
⎦

This completes the answer to question b. Using the Hessian matrix, it is easy to write the quadratic
form in matrix form as:

[7]: A = S(1)/2 * H_q
b = Matrix([-22, -32, -20])
c = 53
A, b, c

[7]:
⎛⎜
⎝

⎡⎢
⎣

5 4 −2
4 5 2

−2 2 8
⎤⎥
⎦

, ⎡⎢
⎣

−22
−32
−20

⎤⎥
⎦

, 53⎞⎟
⎠

[8]: q_check = xvec.T * A * xvec + b.T * xvec + Matrix([c])
q_check[0].simplify()

[8]: 5𝑥2
1 + 8𝑥1𝑥2 − 4𝑥1𝑥3 − 22𝑥1 + 5𝑥2

2 + 4𝑥2𝑥3 − 32𝑥2 + 8𝑥2
3 − 20𝑥3 + 53

Indeed, the matrix form of 𝑞 based on the Hessian matrix agrees with the given 𝑞:

[9]: q_check[0].simplify() == q.simplify()

[9]: True

1.1.3 c

The Hessian is a real, symmetric matrix so we know according to the spectral theorem that there
exists an orthonormal basis of eigenvectors. We find the eigenvalues and eigenvectors by:

[10]: eig = H_q.eigenvects()
eig

[10]:

2

⎡⎢
⎣

⎛⎜
⎝

0, 1, ⎡⎢
⎣

⎡⎢
⎣

2
−2
1

⎤⎥
⎦

⎤⎥
⎦

⎞⎟
⎠

, ⎛⎜
⎝

18, 2, ⎡⎢
⎣

⎡⎢
⎣

1
1
0
⎤⎥
⎦

, ⎡⎢
⎣

−1
2

0
1

⎤⎥
⎦

⎤⎥
⎦

⎞⎟
⎠

⎤⎥
⎦

The eigenvectors associated with different eigenvalues are orthogonal to each other since the matrix
is real symmetric. However, since the algebraic multiplicity of the eigenvalue 18 is two, we need to
make sure that the two associated linearly independent eigenvectors are orthogonal. We use the
Gram-Schmidt procedure to obtain two orthonormal eigenvectors:

[11]: GramSchmidt(eig[1][2], True)

[11]:
⎡
⎢
⎣

⎡
⎢
⎣

√
2

2√
2

2
0

⎤
⎥
⎦

, ⎡
⎢
⎣

−
√

2
6√
2

6
2

√
2

3

⎤
⎥
⎦

⎤
⎥
⎦

The eigenvector associated with 0 only needs to be normalized. There are several ways to do this,
e.g.,

[12]: GramSchmidt(eig[0][2], True)

[12]:
⎡⎢
⎣

⎡⎢
⎣

2
3

−2
31

3

⎤⎥
⎦

⎤⎥
⎦

or,

[13]: Matrix(eig[0][2]).normalized()

[13]:
⎡⎢
⎣

2
3

−2
31

3

⎤⎥
⎦

Finally, we combine the three orthonormal eigenvectors in a basis denoted 𝛽:

[14]: beta = GramSchmidt(eig[0][2], True)[0], GramSchmidt(eig[1][2], True)[0],␣
↪GramSchmidt(eig[1][2], True)[1]

beta

[14]:
⎛⎜⎜
⎝

⎡⎢
⎣

2
3

−2
31

3

⎤⎥
⎦

, ⎡
⎢
⎣

√
2

2√
2

2
0

⎤
⎥
⎦

, ⎡
⎢
⎣

−
√

2
6√
2

6
2

√
2

3

⎤
⎥
⎦

⎞⎟⎟
⎠

The assoicated change-of-basis matrix 𝑄 is:

[15]: Q = Matrix([beta])
Q

[15]:
⎡
⎢
⎣

2
3

√
2

2 −
√

2
6

−2
3

√
2

2
√

2
6

1
3 0 2

√
2

3

⎤
⎥
⎦

Let’s check that 𝑄 is indeed an orthogonal matrix:

3

[16]: Q * Q.T

[16]:
⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

Note that 𝑄 is not unique (not even up to multiplication by −1) as there are infinitely many ways to
obtain an orthonormal basis for the eigenspace associated with 18. Here is another change-of-basis
matrix:

[17]: V = Matrix([[S(1)/3, S(-2)/3, S(2)/3], [S(2)/3, S(-1)/3, S(-2)/3], [S(2)/3,␣
↪S(2)/3, S(1)/3]])

V * V.T, H_q * V, V

[17]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

6 −12 0
12 −6 0
12 12 0

⎤⎥
⎦

, ⎡⎢
⎣

1
3 −2

3
2
32

3 −1
3 −2

32
3

2
3

1
3

⎤⎥
⎦

⎞⎟
⎠

1.1.4 d

We insert 𝑥𝑥𝑥 = (1, 2, 1) in the expresseion of ∇𝑞 which yields:

[18]: nabla_q.subs({x1:1,x2:2,x3:1})

[18]:
⎡⎢
⎣

0
0
0
⎤⎥
⎦

Since the gradient at the given point is the zero vector, then 𝑥𝑥𝑥 = (1, 2, 1) is a stationary point. To
find all stationary points, we find all solutions to the equation system ∇𝑞(𝑥𝑥𝑥) = (0, 0, 0):

[19]: solve(list(nabla_q),[x1,x2,x3])

[19]: {𝑥1 ∶ 2𝑥3 − 1, 𝑥2 ∶ 4 − 2𝑥3}
Setting 𝑥3 = 𝑡, 𝑡 ∈ ℝ, we see that all stationary points are given by:

(𝑥1, 𝑥2, 𝑥3) = (2𝑡 − 1, −2𝑡 + 4, 𝑡) = (2, −2, 1)𝑡 + (−1, 4, 0)

where 𝑡 ∈ ℝ.

1.1.5 e

Since the function 𝑞 is a quadratic form, the line found in question d above is a line along which there
is no increase nor decrease of 𝑞. In fact, this line is (1, 2, 1) + span(𝑣1) where 𝑣1 is an eigenvector
of 0. So, the function 𝑞 is constant in the direction of 𝑣1. Remark: The Hessian is not really useful
here since:

[20]: H_q.eigenvals()

[20]: {0 ∶ 1, 18 ∶ 2}

4

1.1.6 f

Given 𝑥0, and restating the gradient:

[21]: x0 = Matrix([1, 2, 1]) + 3 * V[:, 1]
nabla_q, x0

[21]:
⎛⎜
⎝

⎡⎢
⎣

10𝑥1 + 8𝑥2 − 4𝑥3 − 22
8𝑥1 + 10𝑥2 + 4𝑥3 − 32

−4𝑥1 + 4𝑥2 + 16𝑥3 − 20
⎤⎥
⎦

, ⎡⎢
⎣

−1
1
3

⎤⎥
⎦

⎞⎟
⎠

We carry out the gradient method to compute 𝑥10, where 𝑥𝑛+1 = 𝑥𝑛 − 𝛼∇𝑞(𝑥𝑛) for 𝑛 = 0, 1, 2, …:

[22]: alpha = 0.02
x = x0
for n in range(1,11):

x = x - alpha * nabla_q.subs({x1: x[0], x2: x[1], x3: x[2]})
x

[22]:
⎡⎢
⎣

0.976941569907863
1.98847078495393
1.02305843009214

⎤⎥
⎦

The gradient method converges towards (1, 2, 1) since 3 * V[:,1] belongs to the orthogonal com-
plement of the null-space of 𝐴. The gradient method progresses along this direction and intersects
the “stationary line” at the point (1, 2, 1).

1.2 Exercise 2
Given quadratic form:

[23]: x1, x2, x3, x4 = symbols("x_1 x_2 x_3 x_4")
q = 2 * x1 * x3 + 4 * x2 * x4
q

[23]: 2𝑥1𝑥3 + 4𝑥2𝑥4

1.2.1 a

The Hessian matrix is given by:

[24]: H = hessian(q, [x1, x2, x3, x4])
H

[24]:
⎡
⎢⎢
⎣

0 0 2 0
0 0 0 4
2 0 0 0
0 4 0 0

⎤
⎥⎥
⎦

We note that the Hessian matrix is symmetric. A symmetric matrix 𝐴 that fulfills 𝑞 = 𝑥𝑥𝑥𝑇 𝐴𝑥𝑥𝑥,
where 𝑥𝑥𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]𝑇 is thus:

5

[25]: A = S(1)/2 * H
A

[25]:
⎡
⎢⎢
⎣

0 0 1 0
0 0 0 2
1 0 0 0
0 2 0 0

⎤
⎥⎥
⎦

1.2.2 b

An orthogonal matrix 𝑄 that reduces the quadratic form is found as the change-of-basis matrix
that diagonalizing 𝐴:

[26]: Q, Lamda = A.diagonalize(normalize=True)
Q, Lamda

[26]:
⎛⎜⎜⎜⎜⎜
⎝

⎡
⎢⎢⎢
⎣

0 −
√

2
2

√
2

2 0
−

√
2

2 0 0
√

2
2

0
√

2
2

√
2

2 0√
2

2 0 0
√

2
2

⎤
⎥⎥⎥
⎦

,
⎡
⎢⎢
⎣

−2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 2

⎤
⎥⎥
⎦

⎞⎟⎟⎟⎟⎟
⎠

Denote the 𝑖th column vector of 𝑄 by 𝑞𝑞𝑞𝑖, and let 𝛽 = 𝑞𝑞𝑞1, 𝑞𝑞𝑞2, 𝑞𝑞𝑞3, 𝑞𝑞𝑞4.
Defining new coordinates as 𝑘𝑘𝑘 = [𝑘1, 𝑘2, 𝑘3, 𝑘4]𝑇 , where 𝑘𝑘𝑘 = 𝑄𝑇𝑥𝑥𝑥, we have 𝑞 expressed in the
reduced form:

[27]: k1, k2, k3, k4 = symbols("k_1,k_2,k_3,k_4")
kvec = Matrix([k1, k2, k3, k4])
q_new = Matrix([kvec.T * Lamda * kvec])[0]
q_new

[27]: −2𝑘2
1 − 𝑘2

2 + 𝑘2
3 + 2𝑘2

4

1.2.3 c

We now consider 𝑞 restricted to the set:

𝐵 = {𝑥𝑥𝑥 ∈ ℝ4 ∣ 𝑥2
1 + 𝑥2

2 + 𝑥2
3 + 𝑥2

4 ≤ 1}.

Since 𝑞 ∶ 𝐵 → ℝ is continuous on a bounded and closed domain, it has a global minimum and
maximum value by Theorem 5.2.1.

1.2.4 d

Extrema of 𝑞 over the domain 𝐵 are to be found in the stationary points in the interior of 𝐵, at
the boundary of 𝐵, or at exceptional points (see Theorem 5.2.2). Since the function is smooth,
there are no exceptional points. Hence, we must investigate the interior and the boundary. First,
the interior:

The partial derivatives are given by:

6

[28]: qx1 = diff(q, x1)
qx2 = diff(q, x2)
qx3 = diff(q, x3)
qx4 = diff(q, x4)
qx1, qx2, qx3, qx4

[28]: (2𝑥3, 4𝑥4, 2𝑥1, 4𝑥2)
Thus, the gradient is:

[29]: nabla_q = Matrix([qx1, qx2, qx3, qx4])
nabla_q

[29]:
⎡
⎢⎢
⎣

2𝑥3
4𝑥4
2𝑥1
4𝑥2

⎤
⎥⎥
⎦

Alternatively, it can be found by:

[30]: nabla_q = dtutools.gradient(q, [x1, x2, x3, x4])
nabla_q

[30]:
⎡
⎢⎢
⎣

2𝑥3
4𝑥4
2𝑥1
4𝑥2

⎤
⎥⎥
⎦

Hence, obviuosly, the gradient equals the zero vector if and only if 𝑥𝑥𝑥 = 0. We can check this in
Python by:

[31]: solve(list(nabla_q), [x1, x2, x3, x4])

[31]: {𝑥1 ∶ 0, 𝑥2 ∶ 0, 𝑥3 ∶ 0, 𝑥4 ∶ 0}
So, there exists only one stationary point in the interior of 𝑞 on 𝐵, and it is found at (0, 0, 0, 0).
The corresponding function value is:

[32]: q.subs({x1: 0, x2: 0, x3: 0, x4: 0})

[32]: 0
Now, investigating boundary points. We see from the given set that the boundary of 𝐵 is a unit
sphere centred at the origin with a radius of 1, so all points that fulfill 𝑥2

1 + 𝑥2
2 + 𝑥2

3 + 𝑥2
4 = 1:

𝜕𝐵 = {𝑥𝑥𝑥 ∈ ℝ4 ∣ ‖𝑥𝑥𝑥‖ = 1}.

We note that this unit sphere 𝜕𝐵 is invariant under 𝑄𝑇 (and 𝑄) since 𝑄𝑇 is orthogonal and therefore
satisfies ‖𝑄𝑇𝑥𝑥𝑥‖ = ‖𝑥𝑥𝑥‖ for all 𝑥𝑥𝑥 (see Theorem 2.6.1(vi)). Alternatively, you may argue using that 𝑄𝑇

only causes rotation and reflection of the coordinate system and does not alter distances. Hence,

7

we may use the easier new coordinates, which we above denoted by 𝑘𝑘𝑘, and the unit sphere is thus
described by ‖𝑘𝑘𝑘‖ = 𝑘2

1 + 𝑘2
2 + 𝑘2

3 + 𝑘2
4 = 1.

Recall that 𝑞 in the new coordinates was:

[33]: q_new

[33]: −2𝑘2
1 − 𝑘2

2 + 𝑘2
3 + 2𝑘2

4

Note that 𝑘1, 𝑘2, 𝑘3, 𝑘4 are squared in this expression, so 𝑘1, 𝑘2 have negative contributions, while
𝑘3, 𝑘4 have positive contributions. Maximum of 𝑞 on the sphere is thus found, firstly where 𝑘1 =
0, 𝑘2 = 0, and secondly where 𝑘2

4 is largest due to its larger factor, meaning that 𝑘4 = ±1 while
𝑘3 = 0. Maximum on the boundary is thus found at 𝑘𝑘𝑘 = [0, 0, 0, 1]𝑇 and at 𝑘𝑘𝑘 = [0, 0, 0, −1]𝑇 with
a function value of:

[34]: q_new.subs({k1: 0, k2: 0, k3: 0, k4: 1})

[34]: 2
Equivalently, a minimum is found where 𝑘3, 𝑘4 are zero and 𝑘2

1 is largest, so 𝑘1 = ±1, thus requiring
𝑘2 = 0. Minimum on the boundary is thus found at (1, 0, 0, 0) and at (−1, 0, 0, 0) with a function
value of:

[35]: q_new.subs({k1: 1, k2: 0, k3: 0, k4: 0})

[35]: −2
The stationary point is seen to not be an extremum. Global extrema of 𝑞 on 𝐵 are hence on the
boundary as found above. We are not asked to find the location of the extremas, but they are
easily found in the standard basis using 𝑄

[36]: Q * kvec.subs({k1: 0, k2: 0, k3: 0, k4: 1}), Q * kvec.subs({k1: 0, k2: 0, k3:␣
↪0, k4: -1})

[36]:
⎛⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎣

0√
2

2
0√
2

2

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

0
−

√
2

2
0

−
√

2
2

⎤
⎥
⎥
⎦

⎞⎟⎟⎟⎟
⎠

[37]: Q * kvec.subs({k1: 1, k2: 0, k3: 0, k4: 0}), Q * kvec.subs({k1: -1, k2: 0, k3:␣
↪0, k4: 0})

[37]:
⎛⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎣

0
−

√
2

2
0√
2

2

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

0√
2

2
0

−
√

2
2

⎤
⎥
⎥
⎦

⎞⎟⎟⎟⎟
⎠

which is the locations of the two maxima and the two minima, respectively.

1.3 Exercise 3
Given function 𝑓 ∶ ℝ2 → ℝ which for (𝑥, 𝑦) = (0, 0) is 𝑓(0, 0) = 0, and for (𝑥, 𝑦) ∈ ℝ2 � (0, 0) is:

8

[38]: x,y = symbols("x y", real=True)
f = y**2 * cos(x) / (x**2 + y**2)
f

[38]: 𝑦2 cos (𝑥)
𝑥2 + 𝑦2

1.3.1 a

Plot for (𝑥, 𝑦) ∈ ℝ2 � (0, 0):

[39]: dtuplot.plot3d(f, (x, -5, 5), (y, -5, 5))

[39]: <spb.backends.matplotlib.matplotlib.MatplotlibBackend at 0x7fb95ac1df10>

1.3.2 b

First-order partial derivatives for (𝑥, 𝑦) ∈ ℝ2 � (0, 0) are found to be:

[40]: f.diff(x), f.diff(y)

9

[40]:
(−2𝑥𝑦2 cos (𝑥)

(𝑥2 + 𝑦2)2 − 𝑦2 sin (𝑥)
𝑥2 + 𝑦2 , −2𝑦3 cos (𝑥)

(𝑥2 + 𝑦2)2 + 2𝑦 cos (𝑥)
𝑥2 + 𝑦2)

1.3.3 c

2nd-degree Taylor polynomial 𝑃2 of cos(𝑥) expanded from 𝑥0 = 0:

[41]: series(cos(x), x, 0, 3).removeO()

[41]:
1 − 𝑥2

2

1.3.4 d

Note first that 𝑓(𝑥, 𝑥) is just a special case of 𝑓(𝑥, 𝑦) where 𝑥 = 𝑦. The limit value is then easily
computed:

lim
𝑥→0

𝑓(𝑥, 𝑥) = lim
𝑥→0

𝑥2 cos(𝑥)
𝑥2 + 𝑥2 = lim

𝑥→0
cos(𝑥)

2 = 1
2

Check:

[42]: f.subs(y,x).limit(x,0)

[42]: 1
2
or (using Taylor’s limit formula):

[43]: (y**2 * series(cos(x), x, 0, 3).removeO() / (x**2 + y**2)).subs(y,x)

[43]: 1
2 − 𝑥2

4

1.3.5 e

The limit value:

lim
𝑥→0

𝑓(𝑥, 2𝑥) = lim
𝑥→0

(2𝑥)2 cos(𝑥)
𝑥2 + (2𝑥)2 = lim

𝑥→0
4𝑥2 cos(𝑥)
𝑥2 + 4𝑥2 = lim

𝑥→0
4 cos(𝑥)

5 = 4
5

Check:

[44]: f.subs(y,2*x).limit(x,0)

[44]: 4
5

1.3.6 f

The first-order partial derivatives are continuously differentiable on ℝ2 �{(0, 0)} so 𝑓 is differentiable
on this domain. Since 𝑓 is not continuous at (0, 0), it is not differentiable here.

10

1.4 Exercise 4
Given vector field 𝑉𝑉𝑉 and parametrization 𝑟𝑟𝑟(𝑢) of a curve 𝐾1:

[45]: x, y, z, u, t = symbols("x y z u t", real=True)
V = Matrix([-x, x*y**2, x+z])
r = Matrix([u, u**2, u +1])
V, r

[45]:
⎛⎜
⎝

⎡⎢
⎣

−𝑥
𝑥𝑦2

𝑥 + 𝑧
⎤⎥
⎦

, ⎡⎢
⎣

𝑢
𝑢2

𝑢 + 1
⎤⎥
⎦

⎞⎟
⎠

where 𝑢 ∈ [0, 2].

1.4.1 a

Tangent vector 𝑟𝑟𝑟′(𝑢):

[46]: rd = diff(r,u)
rd

[46]:
⎡⎢
⎣

1
2𝑢
1

⎤⎥
⎦

This vector is never the zero vector (and 𝑟𝑟𝑟 is obviously injective), hence the parametrization is
regular.

1.4.2 b

The inner product of 𝑉𝑉𝑉 (𝑟𝑟𝑟(𝑢)) with 𝑟𝑟𝑟′(𝑢) can be carried out as a usual dot product since all elements
are real, ⟨𝑉𝑉𝑉 (𝑟𝑟𝑟(𝑢)), 𝑟𝑟𝑟′(𝑢)⟩ = 𝑉𝑉𝑉 (𝑟𝑟𝑟(𝑢)) ⋅ 𝑟𝑟𝑟′(𝑢). Hence, we get:

[47]: innerproduct = V.subs({x: r[0], y: r[1], z: r[2]}).dot(rd)
innerproduct.simplify()

[47]: 2𝑢6 + 𝑢 + 1
The tangential line integral ∫𝐾1

𝑉𝑉𝑉 ⋅ d𝑠𝑠𝑠 is given by:

[48]: integrate(innerproduct, (u, 0, 2))

[48]: 284
7

1.4.3 c

As a parametrization 𝐾2 = 𝑝𝑝𝑝([0, 1]) of the straight line segment 𝐾2 from (0, 0, 1) to (2, 4, 3) we use:

[49]: xstart = Matrix([0, 0, 1])
xend = Matrix([2, 4, 3])

11

p = xstart + t * (xend - xstart)
p

[49]:
⎡⎢
⎣

2𝑡
4𝑡

2𝑡 + 1
⎤⎥
⎦

where 𝑡 ∈ [0, 1].
The tangent vector 𝑝𝑝𝑝′(𝑡):

[50]: pd = diff(p,t)
pd

[50]:
⎡⎢
⎣

2
4
2
⎤⎥
⎦

The (tangential) line integral ∫𝐾2
𝑉𝑉𝑉 ⋅ d𝑠𝑠𝑠, where the inner product again is a dot product, is:

[51]: innerproduct2 = V.subs({x: p[0], y: p[1], z: p[2]}).dot(pd)
innerproduct2.simplify()

[51]: 128𝑡3 + 4𝑡 + 2
[52]: integrate(innerproduct2, (t, 0, 1))

[52]: 36

1.4.4 d

Looking back at the parametrization 𝑟𝑟𝑟(𝑢), 𝑢 ∈ [0, 2] of 𝐾1, we evaluate the (𝑥, 𝑦) coordinates of the
end points:

[53]: r.subs({u:0}),r.subs({u:2})

[53]:
⎛⎜
⎝

⎡⎢
⎣

0
0
1
⎤⎥
⎦

, ⎡⎢
⎣

2
4
3
⎤⎥
⎦

⎞⎟
⎠

We see that 𝐾1 and 𝐾2 are two curves with the same starting and end points. Thus, 𝑉𝑉𝑉 is not
a gradient vector field since the (tangential) line integral from (0, 0, 1) to (2, 4, 3) depends on the
path, since we got different values in questions b and c (according to Lemma 7.4.1).

Alternatively, we can arrive at the same conclusion by showing that the Jacobian matrix is not
symmetric (according to Lemma 7.3.2):

[54]: V.jacobian([x,y,z])

[54]:

12

⎡⎢
⎣

−1 0 0
𝑦2 2𝑥𝑦 0
1 0 1

⎤⎥
⎦

1.4.5 Some illustrative plots (not asked for)

[55]: K1 = dtuplot.plot3d_parametric_line(
*r, (u,0,2), show=False, rendering_kw={"color": "red"}, colorbar=False

)
K2 = dtuplot.plot3d_parametric_line(

*p, (t,0,1), show=False, rendering_kw={"color": "blue"}, colorbar=False
)
vektorfelt_V = dtuplot.plot_vector(

V,
(x, -.1, 2.1),
(y, -.1, 4.1),
(z, 0, 3),
n=5,
quiver_kw={"alpha": 0.5, "length": 0.05, "color": "black"},
colorbar=False,
show=False,

)

combined = K1 + K2 + vektorfelt_V
combined.legend = False
combined.show()

13

1.5 Exercise 5
Consider the function 𝑓 ∶ ℝ2 → ℝ given by

𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥2

2 + 𝑥1 + 1

and the subset 𝐴 ⊂ ℝ2 given by:

𝐴 = {(𝑥1, 𝑥2) ∈ ℝ2 ∣ −2 ≤ 𝑥1 ≤ 2 ∧ −1 ≤ 𝑥2 ≤ 1}.

1.5.1 a

We compute the integral ∫𝐴 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2) by:

[56]: x1, x2 = symbols("x_1 x_2", real=True)
f = x1**2 + x2**2 + x1 + 1
integrate(f, (x1,-2,2), (x2,-1,1))

[56]:

14

64
3

1.5.2 b

Determining the volume of the set

{(𝑥1, 𝑥2, 𝑥3) ∈ ℝ3 ∣ (𝑥1, 𝑥2) ∈ 𝐴 ∧ 0 ≤ 𝑥3 ≤ 𝑓(𝑥1, 𝑥2)}.

We first plot the graph of 𝑓 :

[57]: dtuplot.plot3d(f, (x1, -2, 2), (x2, -1, 1))

[57]: <spb.backends.matplotlib.matplotlib.MatplotlibBackend at 0x7fb9398339d0>

and note that 𝑓 is positive on 𝐴. Since 𝑓 is positive on 𝐴, then 𝑓 resembles an elevation function.
The volume is thus equal to the integral found in question a, i.e. 64/3.

15

1.5.3 c

Let 𝑎 > 0. Let 𝐵 ⊂ ℝ2 denote the circular disk with center at the origin and radius 𝑎:

𝐵 = {(𝑥1, 𝑥2) ∈ ℝ2 ∣ 𝑥2
1 + 𝑥2

2 ≤ 𝑎2}.

Parametrizing 𝐵 using polar coordinates (𝑟, 𝜃) as:

𝑠(𝑟, 𝜃) = (𝑟 cos(𝜃), 𝑟 sin(𝜃))

where 𝑟 ∈ [0, 𝑎], 𝜃 ∈ [0, 2𝜋[. Hence, we can write 𝐵 as:

𝐵 = {(𝑟 cos(𝜃), 𝑟 sin(𝜃)) ∈ ℝ2 ∣ 𝑟 ∈ [0, 𝑎] ∧ 𝜃 ∈ [0, 2𝜋[}.

[58]: r, theta = symbols("r theta", real=True)
s = Matrix([r * cos(theta), r * sin(theta)])
s

[58]:
[𝑟 cos (𝜃)

𝑟 sin (𝜃)]

The partial derivatives of 𝑠 is given by:

[59]: sr = s.diff(r)
stheta = s.diff(theta)
sr, stheta

[59]:
([cos (𝜃)

sin (𝜃)] , [−𝑟 sin (𝜃)
𝑟 cos (𝜃)])

and the Jacobian determinant is therefore:

[60]: Jac_det = Matrix.hstack(sr, stheta).det().simplify()
Jac_det

[60]: 𝑟

1.5.4 d

To determine the value of 𝑎 to 3 decimal places such that

∫
𝐴

𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2) = ∫
𝐵

𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2)

we must compute the right-hand side’s plane integral ∫𝐵 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2).
Since the Jacobian determinant is non-zero in the interior of 𝐵, and since the parametrization is
regular (injective and never the zero vector on the interior of 𝐵), we can carry out the integral over
the parameter region with the Jacobian function as a correction factor.

The Jacobian function is the absolute value of the Jacobian determinant. The determinant is 𝑟 and
thus always non-negative, so the Jacobian function is just:

16

[61]: Jac = r

The integrand of the plane integral of 𝑓 over 𝐵:

[62]: a = symbols("a", real=True)
integrand = Jac_det * f.subs({x1: r * cos(theta), x2: r * sin(theta)}).

↪simplify()
integrand

[62]: 𝑟 (𝑟2 + 𝑟 cos (𝜃) + 1)
The plane integral ∫𝐵 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2):

[63]: int_value = integrate(integrand, (theta, 0, 2* pi), (r,0,a))
int_value

[63]: 𝜋𝑎4

2 + 𝜋𝑎2

Hence, ∫𝐴 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2) = ∫𝐵 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2) happens exactly when 64/3 = 𝜋𝑎4
2 +𝜋𝑎2. Thus,

we can find the value of 𝑎 > 0 that results in ∫𝐴 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2) = ∫𝐵 𝑓(𝑥1, 𝑥2) d(𝑥1, 𝑥2) by:

[64]: sols = solve(Eq(int_value, S(64) / 3))
sols

[64]:
⎡⎢
⎣

−
√

3√−3√𝜋 +
√

3√3𝜋 + 128
3 4√𝜋 ,

√
3√−3√𝜋 +

√
3√3𝜋 + 128

3 4√𝜋
⎤⎥
⎦

[65]: sols[0].evalf(),sols[1].evalf()

[65]: (−1.67884978657658, 1.67884978657658)
Hence, since 𝑎 > 0, we conclude that 𝑎 = 1.679.

17

	Solution of Exam F24
	Exercise 1
	a
	b
	c
	d
	e
	f

	Exercise 2
	a
	b
	c
	d

	Exercise 3
	a
	b
	c
	d
	e
	f

	Exercise 4
	a
	b
	c
	d
	Some illustrative plots (not asked for)

	Exercise 5
	a
	b
	c
	d

