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1 Introduction

Permanent magnets are crucial for the modern sustainable energy society. Dur-
ing the past 30 years, there has been an immense development within strong
permanent magnets. The composition FeNdB (iron-neodynium-boron) has the
best performance for any permanent magnet material in terms of the magnitude
of the produced field. This material is used in wind turbines, electric cars and
many other places where strong permanent magnets are needed. Throughout
this exercise you will develop the theory necessary for analyzing the so-called
Halbach magnets [1] in two dimensions. Such magnet configurations can create
rather large and homogeneous magnetic fields and are used in many different
technical applications.

Before we get to the modeling, you will need an introduction to cylindrical
coordinates as these pose the natural choice of coordinate base when consider-
ing cylindrical magnets. Throughout this exercise we shall distinguish between
scalars, written in italic (e.g. time t) and vector fields, which are written in bold
and normal type (e.g. the current density J).

2 Cylindrical coordinates

We will begin by treating vector fields from a different perspective than what
we are used to in Math 1. In the eNotes a vector field at the point (x, y, z) is
given as a vector with the coordinates:

V = (Vx, Vy, Vz).

Let us consider a different representation called cylindrical coordinates.
An orthonormal basis (er, eθ, ez) is introduced at every point in space (x, y, z).
This basis depends on the coordinates of the point such thart the vector er
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Figure 1: Definition of the coordinate system with rectangular coordinates
(x, y, z) and cylindrical coordinates (r, θ, z).

is parallel to the position vector to the point (x, y, 0). The vector er can be
considered as a plane vector and eθ is orthogonal to er, i.e. parallel to the
vector (−y, x, 0). The vector ez is identical to the usual rectangular-based vector
(0, 0, 1).
The vector field V = (Vx, Vy, Vz) may now be decomposed along these directions:

V = Vrer + Vθeθ + Vzez (1)

with Vr, Vθ and Vz denoting the projections of the vector field V along the new
basis vectors:

Vr = V · er , Vθ = V · eθ , Vz = V · ez. (2)

Exercise 1

Show that the new basis vectors may be written as a function of
rectangular coordinates in the following way:

er = (x2 + y2)−1/2(x, y, 0) (3)

eθ = (x2 + y2)−1/2(−y, x, 0) (4)

ez = (0, 0, 1) (5)

Once again we consider the rectangular coordinate system and make a change
of variables by considering polar coordinates in the plane and keeping the z-
coordinate (see Fig. 1):

x = r cos θ (6)

y = r sin θ (7)

z = z. (8)
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The coordinates (r, θ, z) are known as cylindrical coordinates.

Exercise 2

Show that the basis vectors (er, eθ, ez), expressed by cylindrical co-
ordinates are given by:

er = (cos θ, sin θ, 0) (9)

eθ = (− sin θ, cos θ, 0) (10)

ez = (0, 0, 1) (11)

Let us now determine the gradient of a function f with respect to the basis
(er, eθ, ez), expressed in cylindrical coordinates.

From math class we know that the gradient is given by:

∇f(x, y, z) = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
) =

∂f

∂x
ex +

∂f

∂y
ey +

∂f

∂z
ez (12)

The gradient may be written with respect to the new basis (er, eθ, ez) and
is given by:

∇f = ∇frer +∇fθeθ +∇fzez (13)

where ∇fr, ∇fθ and ∇fz are determined by the directional derivatives:

∇fr = ∇f · er , ∇fθ = ∇f · eθ , ∇fz = ∇f · ez (14)

Exercise 3

Use the chain rule and Eq. 6-11 to find an expression for the partial
derivative of the function f with respect to r and show that:

∂f

∂r
= ∇f · er (15)

Hint:
∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
+
∂f

∂z

∂z

∂r

Exercise 4

Use the same method as above to find the partial derivative of the
function f with respect to θ and show that:

∂f

∂θ
= r∇f · eθ (16)
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Exercise 5

Show by using Eq. 13 and exercises 3 and 4 that the gradient is
given by:

∇f(r, θ, z) =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez (17)

We now seek an expression for the divergence of a vector field in cylindrical
coordinates:

V = Vrer + Vθeθ + Vzez (18)

In order to find this expression we shall use the following rule

Exercise 6

Let f(x, y, z) be a function and V(x, y, z) a vector field. Show that
the expression given below is true by finding the right hand side and
the left hand side and equating them:

Div(fV) = ∇f ·V + fDiv(V) (19)

Hint: remember the product rule for differentiation.

Exercise 7

Use Eqs. 3-5 to find the divergence of the three basis vectors (er, eθ, ez).
Two of these are zero. Explain why this is so.
Express the non-zero divergence in cylindrical coordinates (r, θ, z).

Exercise 8

Show that the divergence of a vector field expressed in cylindrical
coordinates is given by:

Div(V) =
∂Vr
∂r

+
Vr
r

+
1

r

∂Vθ
∂θ

+
∂Vz
∂z

(20)

Hint: use exercises 5-7.
In a similar way as above, it is possible to derive the expression for the curl of
a vector field expressed in cylindrical coordinates. You are most welcome to do
this and include it in your report; the result is:

Rot(V) = (
1

r

∂Vz
∂θ
− ∂Vθ

∂z
)er + (

∂Vr
∂z
− ∂Vz

∂r
)eθ + (

∂Vθ
∂r

+
Vθ
r
− 1

r

∂Vr
∂θ

)ez. (21)
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3 Magnetic field around a conductor

Let us now move on by using cylindrical coordinates to do some magnetic field
calculations.

Before considering permanent magnets, we will dwell a bit on magnetic fields
in general. We will start by finding the magnetic field caused by an infinitely
long wire with the constant current, I. We assume the wire to be straight and
will define the direction along the wire to be the z-axis

Exercise 9

What is the current density, J, within a circle centered on the in-
finitely long wire?

Hint: The unit for current density is A/m
2
. The answer should be derived by

thinking and not necessarily doing any calculations.
Electromagnetism is well described by the four Maxwell equations. The deriva-
tion of these, or rather, their discovery, is a story for another day. We will here
settle on mere applying the equation to various problems. The fourth Maxwell
equation relates the magnetic flux density to the current density B:

Rot(B) = µ0J + µ0ε0
∂E

∂t
. (22)

The magnetic flux density, B, can be understood as the generating magnetic
field, as long as one considers space outside of a magnet. In Eq. 22 the electric
field, E, is also present. Finally, we encounter two fundamental constants, which
are the vacuum permeability (µ0 = 4π·10−7 N/A

2
) and the vacuum permittivity

(ε0 = 8.85 · 10−12 C2/(Nm2)).1

We assume that the current is constant in the infinite wire and so variations
in time are not present. This means that we can safely assume that ∂E

∂t = 0.2

Given that the wire is infinitely long we can deduce a few things about the
vector-field components of the flux density. The relation between B and J in Eq.
22 dictates that Rot(B) and J are parallel when there is no variation in time
of the electric field, ∂E∂t = 0. Since the current density only has one component,
in the z-direction, i.e. J = (0, 0, Jz), then Rot(B) may only have components
in the z-direction. Furthermore, as B does not vary in the z-direction (the wire
is infinitely long) we must have:

∂Br
∂z

= 0 ,
∂Bθ
∂z

= 0 ,
∂Bz
∂z

= 0 (23)

1What happens if you calculate 1√
µ0ε0

. Do you know what this new constant is?
2Even in the case where the current was AC, i.e. periodically varying, a large frequency

would be required for this term to be of any importance. In relativity this term has a huge
impact.
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Exercise 10

Using the arguments given above and Eq. 21 to show that:

∂Bz
∂r

= 0 ,
∂Bz
∂θ

= 0 (24)

Now, since the z-component of B is constant and since B must go to zero
infinitely far away from the wire we have that Bz = 0.

We can also derive that the r-component of B must be zero. We just saw
that ∂Br

∂z = 0. Furthermore, ∂Br

∂θ must also be zero due to symmetry – the field
must not vary as we rotate the wire about it’s axis. This means that Br can
only be a function of r.

Exercise 11

Use the arguments given above and the fact that Div(B) = 0 to
write down and solve a differential equation for Br(r).

Hint: We demand that Br → 0 as r →∞. Show that Br(r) = c/r.

Utilizing the symmetry of the wire by mirroring a cross section of the con-
ductor we can argue that c = 0. The only non-zero component left is Bθ.

Let us now use Stokes’ theorem. This states that the surface integral over
the flux of the curl of a vector field is equivalent to the tangential curve integral
of the vector field along the edge of the surface. Given a vector field V, this
may be written as: ∫

Fr

Rot(V) · nF dµ =

∫
∂F

V · eF dµ. (25)

See theorem 27.3 in the eNotes.
Utilizing Stokes’ theorem we may find Bθ.

Exercise 12

Use Stokes’ theorem (Eq. 25) with V = (0, Bθ, 0) in conjunction
with the fourth Maxwell equation (22) and find Bθ(r) about an
infinitely long conductor (wire) carrying a constant current, I.

Hint: Consider a curve surrounding the wire (e.g. a circle with radius s centered
on the axis of the conductor).

Exercise 13

Plot the vector field (fieldplot) B about an infinitely long conduc-
tor (at a fixed z).
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4 A Halbach magnet

Now that we have improved our understanding of how magnetic fields behave
(e.g. they are divergence free) we can begin to consider permanent magnets. In
this part of the exercises we will study a Halbach magnet, which essentially is
a ring consisting of magnetic material with a hole (bore) in the middle and air
surrounding the ring. The local magnetisation in a Halbach magnet varies with
r and θ as:

Brem =

(
Brem,r

Brem,θ

)
= Brem

(
cos(pθ)
sin(pθ)

)
(26)

Given our convention for the notation of the basis vectors this means that:

Brem = (Brem cos (pθ))er + (Brem sin (pθ))eθ (27)

The 2-dimensional vector, Brem, is the so-called remanence. This is the magnet’s
own magnetic flux density or permanent magnetisation. Brem is the magnitude
of this vector. Finally, p is an integer parameter (p 6= 0) which can either a
positive or a negative value. This is the key parameter for a Halbach magnet.

Exercise 14

Use SymPy’s field plot in order to visualise the vector field given
in Eq. 26. Make sure to use polar coordinates and that there is a
hole in the middle. What influence does the parameter p have?

4.1 The magnetic field exterior to the magnetic material

Under the assumption that the Halbach magnet is infinitely long we may con-
tinue to work in two dimensions. We seek a solution that gives us the magnetic
flux density exterior to the magnetic material. We thus wish to find an ex-
pression for B. During our treatment of the fourth Maxwell equation (22) we
encountered the current density, J. This is also known as the total current
density indicating that it consists of several contributions. These are the free
current density (Jf ) and the bound current density (Jb). The free current den-
sity is what we normally consider to be electrical current – it is completely
analog to the current I from the first part of this assignment. We shall now
emphasise that we assume no relativistic effects (∂E∂t = 0) and zero free current.
We can thus write:

Rot(B) = µ0Jb. (28)

How can we get a physical meaning of the bound currents? Well, a bound
current is a macroscopic way of considering a collection of spins, or more gen-
erally, angular momentum of charged particles inside a solid body. This leads
directly to the observation that Jb = 0 in air (or vacuum). However, inside a
magnetized body there is a non-zero bound current. The main contributor to
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this is the spin of electrons and a bound current is essentially a measure of how
magnetic a body is.

Technically, when working with magnetic fields, it is an advantage to use the
so-called magnetic vector potential, A, defined in the following way:

B = Rot(A). (29)

When there are no free currents, we furthermore have that

Rot(B) = Rot(Brem) (30)

Since the divergence of B is always zero we can choose A so that Div(A) = 0.
In order to show this, we need to proof the following:

Rot (∇f) = 0, (31)

where f is a scalr function defined on <.

Exercise 15

Show that Rot (∇f) = 0 with f ∈ <.

Hint: Use the fact that ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

with i, j = 1, 2, 3.

Exercise 16

Show that we can freely choose A so that it’s divergence is zero.
Define A = A0 +∇f , where Div(A0) 6= 0 and f is a scalar function
defined on <. What is the curl of A then?

The result of Task 16 means that we can choose A0 freely relative to Eq.
29. All we need to do is choose a function f , so that Div(∇f) = −Div(A0).
One can show that this is always possible and we can therefore continue with a
choice of A with the property that Div(A) = 0.

Exercise 17

We need to push a bit further with vector calculus in order to utilise
Eq. 29. Find the curl of B from Eqs. 29–30.

Hint: Find another expression for Rot(Rot(A)).

We now have a so-called 2nd partial differential equation:

−∇2A = Rot(Brem) (32)

where the independent variables are the polar coordinates, r og θ. We wish to
find the components of the vector field A. In order to achieve this we will be
using the curl operator in cylindrical coordinates in the following.
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Exercise 18

Use Eq. 26 and the curl in cylindrical coordinates to show that the
only non-zero component of Rot(Brem) is Rot(Brem) · ez.

We now have the equation:

−∇2Az(r, θ) = Rot(Brem) · ez. (33)

Note that we are only considering the z-component of Rot(Brem). The solution
to Eq. 33 is outside the scope of the curriculum of Math 1. The idea is, however,
to find a solution to the homogeneous part of the equation and a particular
solution. The solution to Eq. 33 furthermore depends on the parameter p in
the sense that one solution is valid when p = 1 while another solution is valid
when p 6= 0. In the following we shall only consider the case with p = 1. In
this case the linear combination of the solution to the homogeneous and the
particular solutions is:

Az(r, θ) =
(
Cr +Dr−1

)
sin(θ)−Bremrln(r)sin(θ) . (34)

Exercise 19

Show that this is indeed a solution and that Az satisfies the differ-
ential equation 33.

It is important to emphasise that C and D are constants depending on the
boundary conditions. It is possible to find these constants by defining a specific
problem with appropriate boundary conditions.

4.2 Solution of the partial differential equation

Consider the drawing in Fig. 2, which defines a region in the interval Ri ≤
r ≤ Ro where the permanent magnetic material is situated and follows the
expression in Eq. 26. Air (or rather, vacuum) is assumed to fill the domains
where Rc ≤ r ≤ Ri and Ro ≤ r ≤ Re. This means that there is no magnetisation
(remanence) in these domains. This can be mathematically stated by letting
the relative permeability be µr = 1. The permeability is assumed to be µr =∞
on the domains defined by 0 ≤ r ≤ Rc and Re ≤ r. This means that a very
small field is sufficient to align the magnetic spins.

Let us now introduce the so-called magnetic vector field H through:

B = µ0µrH + Brem. (35)

Using electromagnetic theory it is possible to derive boundary conditions
that are generally valid for B and H. These may be written in the following
way:

BIr = BIIr |r = Ri (36)
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Figure 2: Drawing of the relevant domain for the solution. The Halbach magnet
is placed in the grey area between r = Ri and r = Ro.

BIIr = BIIIr |r = Ro (37)

HI
θ = 0|r = Rc (38)

HI
θ = HII

θ |r = Ri (39)

HII
θ = HIII

θ |r = Ro (40)

HIII
θ = 0|r = Re (41)

The Roman numerals I, II and III refer to the three domains as shown in
Fig. 2.

Exercise 20

Find the components of the vector field for B and H, i.e. Br, Bθ,
Hr and Hθ..

Hint 1: We know the z-component of the vector field A. Use this in combina-
tion with Eq. 29, 34 and 35 . Hint 2: First find the components of ∂Az

∂r and ∂Az

∂θ .

We now have four expressions, one for each of the non-zero components of
B and H. Note that there is only a non-zero remanence in domain II, i.e. inside
the magnetic material.

By considering the boundary conditions given in Eq. 36 and the expression
for Br from Eq. 20 we obtain:

cos(θ)
(
CI +DIR−2i

)
= cos(θ)

(
CII +DIIR−2i −Bremln(Ri)

)
⇒ CI +DIR−2i − C

II −DIIR−2i = −Bremln(Ri) (42)
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Exercise 21

Write a similar expression by considering the boundary conditions
for B (Eq. 37).

Exercise 22

Use the components of the vector field from Task 20 and the bound-
ary conditions for Hθ to write similar expressions for CI and CIII .

Hint: Note that µr 6= 1 on domain II and µr = 1 on domains I and III.

Exercise 23

Use the boundary conditions for Hθ at r = Rc and r = Re to obtain
two expressions (where CI and DI appear in one while CIII and
DIII appear in the other).

We now have six equations with six unknowns: CI , CII , CIII , DI , DII , DIII .
This can be written in a matrix:

1 −1 0 R−2i . . .
...

...
...

...
. . .




CI

CII

CIII

DI

DII

DIII

 =


−Bremln(Ri)

...

 (43)

Exercise 24

Find the six constants. It is a great help to use SymPy, e.g. ma-

trix inversion or solve.

SymPy’s output can be quite messy. It is therefore imperative to check
it. We postulate that the solution may be written as (for p = 1):

a =
R2
e −R2

o

R2
e +R2

o

, b = −R
2
i −R2

c

R2
i +R2

c

(44)

DII = −
(
aµr − 1

aµr + 1
R−2o −

µrb− 1

µrb+ 1
R−2i

)−1
Brem ln

(
Ri
Ro

)
(45)

CI =
DII

R2
i +R2

c

(
1− µrb− 1

µrb+ 1

)
(46)

DI = CIR2
c (47)

CII = −DII µra− 1

µra+ 1
R−2o +Brem ln(Ro) (48)
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CIII =
DII

R2
o +R2

e

(
1− µra− 1

µra+ 1

)
(49)

DIII = CIIIR2
e (50)

Exercise 25

Show that the solution you have found in SymPy is identical to Eqs. 45-50.

4.3 A single Halbach cylinder in air

Considering a single Halbach cylinder in air/vacuum we need to modify the
boundary conditions in the central bore (r = Rc) and on the outside of the
magnet (when r →∞). In order to derive the expressions for the six constants
above we had to assume an infinite permeability at the centre and outside the
magnet. We will now let the radius of the central infinitely permeable cylinder
go to zero and the outer cylinder’s radius towards infinity, which in effect creates
a Halbach magnet in air.

Exercise 26

Show that

lim
Re→∞

a = 1 (51)

and

lim
Rc→0

b = −1. (52)

We can now find the magnetic field given a and b for a single Halbach magnet
in air. Considering only permanent magnets with a small relative permeability,
µr ≈ 1, then the expressions for the six constants may be simplified. Physically,
this is a good approximation as the best permanent magnets based on iron (Fe),
neodynium (Nd) and boron (B) have a relative permeability of µr = 1.05.

Exercise 27

Find the limit of the constant DII when µr → 1.

Exercise 28

Find the limit of the constants CII , DIII and CIII in the same limit.

Exercise 29

Find the limits of the constants CI and DI when µr → 1.
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With the six constants simplified in the limit µr → 1 we can now obtain the
components of the magnetic field. We encourage you do this on your own. We
get:

BIr = Brem ln

(
Ro
Ri

)
cos(θ) (53)

BIθ = −Brem ln

(
Ro
Ri

)
sin(θ) (54)

BIIr = Bremln

(
Ro
r

)
cos(θ) (55)

BIIθ = −Brem

(
ln

(
Ro
r

)
− 1

)
sin(θ). (56)

Exercise 30

Show graphically how the norm B =
√
B2
r +B2

θ behaves. Assume
that Brem = 1.4 T. Try different values for Ri and Ro.

Hint: Try out the contour function in SymPy in cylindrical coordinates.

Exercise 31

Find the norm B =
√
B2
r +B2

θ in the cylinder bore, i.e. domain I.
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5 Halbach magnets and their applications

Let us consider actual applications of Halbach cylinders. We will first dimension
a Halbach magnet for magnetic resonance imaging (MRI) and subsequently we
will consider a magnetic coupling / force transfer between two Halbach magnets.

5.1 Halbach magnet for MRI

A Magnetic Resonance Imaging (MRI) scanner is a device that has medical
and biological applications. The principle behind MRI is that the spins of the
atomic nuclei precess with a certain frequency (the Larmor frequency), which is
a function of field. In this way the various constituents of an (internal) organic
body can be imaged. A large magnetic field is required for this operation.

Let us consider an MRI magnet made with a coil (a solenoid) and a Halbach
cylinder for comparison. A coil is essentially a structure consisting of a wound
wire that is electrically conducting.

Exercise 32

Assume that a coil is a collection of stacked ring-shaped wires (Fig.
4). There are N windings. In what direction does the magnetic field
point inside the coil?

It turns out that the field generated inside the coil is constant and we denote
its magnitude B0. By using Eq. 22 we may find the field outside the coil.
Consider this equation on integral form and that the coil is long and narrow.
This gives, what is also known as Ampere’s law:∮

C

B · dl = µ0Ienc (57)

The current, Ienc, is the total current within the region bound by the integral.

Figure 3: MR scanners are used by hospitals and biological scientific researc.
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(a) (b)

Figure 4: A coil. The schematic of the coil is seen from the side, The cross
indicates that the current runs into the page while a dot indicates that it runs
out of the page.

Exercise 33

Find the field produced by the coil using Ampere’s law written as
a function of the current in the coil, I, the number of windings, N
and the length of the coil, L.

Hint : The field outside the coil may be considered to be zero. How much cur-
rent is contained by the curve defined in the line integral?

Consider an MRI scanner with a hole diameter of 60 cm and producing a
field of B0 = 1.5 T and has a length of 50 cm. Furthermore, let us assume that
the remanence of a permanent magnet is Brem = 1.4 T.

Exercise 34

How large should the Halbach cylinder be in order to produce this
field?

We want to compare the Halbach cylinder to the solenoid.

Exercise 35

Assuming that we make a solenoid of 5000 windings, how much
current do we have to run through it to produce the desired field?
Is this realistic?

We will now try to estimate if using the Halbach cylinder for an MRI-scanner
is also an environmentally more friendly solution than the solenoid. We assume
that we will make the solenoid of copper wire with a 1 mm diameter.
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Figure 5: Left panel: function IC(B) (blue curve) and load line (red curve); the
operating point is indicated by the black dot. Right panel: superconducting
wire.

Exercise 36

Assuming again the 5000 windings, how long a copper wire do we
need for the solenoid?

Unfortunately conducting a current through a wire results in heating of the
wire due to its resistivity, an effect known as Joule heating. The resistivity of
copper is ρ = 1.68 ∗ 10−8Ωm. The total resistance of the copper wire is given
as R = ρ lA , where l is the length of the wire and A is its cross-sectional area.
The Joule heating is given as P = I2R.

Exercise 37

How much heating can we expect in the copper wire? Is this negli-
gible?

Now we consider a superconducting solenoid made of superconducting wire
to avoid the problem of resistance in the wire. In a superconductor below the
critical current, there is zero resistance. The maximum current IC that we can
run through a superconducting wire is a function of the magnetic flux density
B experienced by the wire: IC(B) = I0/(1 + B/B0), where B0 = 3 T, and
I0 = 1.8 kA. We assume B to be equal to the magnetic flux density in the bore
of the solenoid. The IC(B) curve is shown in Fig: 5.

Exercise 38

Using the result from exercise 33, express the magnetic field B and
the current IC as function of the variables N , L, B0, I0. If we
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require B = 1.5 T, how many windings N are necessary? (Find
the expression of N as function of the required flux density B, the
length L and the parameters B0, and I0. Then plug the values into
the expression to find the numerical value)
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